Effects of the lipid-coated zinc oxide dietary supplement on intestinal mucosal morphology and gene expression associated with the gut health in weanling pigs challenged with enterotoxigenic Escherichia coli K88

Author:

Han Jeong Hee1,Song Min Hye2,Kim Ha Na2,Jang Insurk2,Lee C. Young2,Park Byung-Chul3

Affiliation:

1. College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, South Korea.

2. Regional Animal Industry Centre, Gyeongnam National University of Science and Technology, Jinju 52725, South Korea.

3. Institute of Green Bio Science and Technology, and Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, South Korea.

Abstract

Effects of a lipid-coated zinc oxide (ZnO) Shield Zn® (SZ) vs. ZnO were evaluated. Forty 25-d-old weanling pigs were fed a nursery diet supplemented with 100 mg kg−1 Zn with ZnO (ZnO-100), ZnO-2500, SZ-100, -200, or -400. All piglets were challenged orally with 5 × 108 colony-forming units of enterotoxigenic Escherichia coli K88 on day 7 and euthanized on day 14. The fecal consistency score (FCS) was less for the SZ group vs. ZnO-100 (P < 0.05). The intestinal villus height:crypt depth ratio and goblet cell density were greater for the SZ group vs. ZnO-100. By regression analyses, SZ-100 to -200 and SZ-300 to -400 were comparable to ZnO-2500 in the FCS and intestinal variables, respectively. The jejunal mucosal mRNA level did not differ between the SZ group and either ZnO group in insulin-like growth factor-I and multiple structural proteins and cytokines including zonula occludens protein (ZO) 1 and interleukin (IL) 10 except for lower ZO-1 and IL-10 mRNA levels for the SZ group than for ZnO-2500 and ZnO-100, respectively. The ZO-1 mRNA level regressed positively on the supplemental SZ concentration. Results suggest that SZ play a role in epithelial barrier function and inflammation by modulating the expression of ZO-1 and IL-10.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Food Animals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3