Effect of changes in management practices and animal performance on ammonia emissions from Canadian beef production in 1981 as compared with 2011

Author:

Legesse Getahun1,Kroebel Roland2,Alemu Aklilu W.2,Ominski Kim H.1,McGeough Emma J.1,Beauchemin Karen A.2,Chai Lilong3,Bittman Shabtai4,McAllister Tim A.2

Affiliation:

1. Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.

2. Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada.

3. Department of Agricultural and Biosystems Engineering, Iowa State University, 605 Bissell Road, Ames, IA 50011-3270, USA.

4. Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, 6947 Highway 7, P.O. Box 1000, Agassiz, BC V0M 1A0, Canada.

Abstract

The present study compared ammonia (NH3) emissions from Canadian beef production in 1981–2011. Temporal and regional differences in cattle categories, feed types and management systems, average daily gains, carcass weights, and manure handling practices were considered. A scenario-based sensitivity analysis in 2011 estimated the impact of substituting corn dried distillers’ grains with solubles (DDGS) for grain in feedlot diets. On average, 22% of the total nitrogen (N) intake was lost as ammoniacal nitrogen (NH3-N) in both years. Manure emission sources were consistent across years, averaging 12%, 40%, 28%, and 21% for grazing, confinement, storage, and land spreading, respectively. Emissions per animal in 1981 and 2011 were 16.0 and 18.4 kg NH3 animal−1 yr−1, respectively. On an intensity basis, kilogram of NH3 emitted per kilogram of beef decreased 20%, from 0.17 in 1981 to 0.14 in 2011. This reduction was attributed to increases in reproductive efficiency, average daily gain and carcass weight, and improved breeding herd productivity. In 2011, substituting DDGS for grain in feedlot diets increased total NH3 emissions and losses per animal. Although addition of by-products from the bioethanol industry can lower diet costs, it will be at the expense of an increase in NH3 emissions.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Food Animals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3