Author:
Tachikawa Hiroto,Lund Anders,Ogasawara Masaaki
Abstract
Model calculations were made on the hydrated electron by using the ab initio MO method combined with the MR-SD-Cl method and the coupled cluster theory. The models used in the calculations were water clusters denoted by [e−(H2O)n(H2O)m], where n = 2,3,4, and 6 for the first solvation shell and m = 0–28 for the second and third solvation shells. In these model calculations, the interactions between the excess electron and the water molecules in the first solvation shell are explicitly calculated by ab initio MO methods and the water molecules in the second and third solvation shells were represented by the fractional charges obtained at the MP2/D95V** level. The stabilization energies and the solvation radius r(e−–O), in terms of the distance between the center of the cavity and an oxygen atom of the surrounding water molecules, increased monotonically with the number of water molecules in the first solvation shell. On the other hand, the first excitation energy was not dependent on the number of water molecules in solvation shells, but constant, with the value of ca. 2.0 eV. On the basis of the present calculations, we suggest that (1) the energetic stability of excess electrons depends on both short-range interaction and long-range interaction, (2) the first excitation energy is critically affected by only the short-range interactions, and the excitation is theoretically attributed to the1s→2p transition of the excess electron.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献