Author:
Yu Weichang,Han Fangpu,Kato Akio,Birchler James A
Abstract
An isochromosome was found in the maize HiII Parent B line during somatic karyotyping with a multiprobe fluorescence in situ hybridization (FISH) system. Cytological analyses showed that it pairs with the short arm of chromosome 8 during the pachytene stage of meiosis. The chromosome 8 short arm origin of this isochromosome was also confirmed by FISH at mitotic metaphase. Knob heterochromatin signals were present at the short arms of chromosome 8 when subjected to prolonged exposure and also observed at both ends of the isochromosome. This isochromosome can be a univalent or a trivalent by pairing with the normal chromosome 8 short arms during meiosis. At anaphase and telophase, the isochromosome lagged behind other chromosomes. It had a transmission rate of 17%–20% from both male and female gametes. One plant homozygous for the isochromosome contained 2 isochromosomes that differed in the quantity of their CentC centromere repeat sequence. Both variations of the isochromosome were transmitted to the next generation. Because the 2 isochromosomes should be identical by descent, these observations document a radical change in copy number of the centromere repeat array within 1 generation. Plants with 1 isochromosome were not normal as compared with the original HiII Parent B plants. Those that contained a pair of this isochromosome (6 total copies of 8S) were even more abnormal and had reduced fertility. The results indicate the ability of the somatic karyotyping system to recognize and characterize chromosomal aberrations.Key words: maize, isochromosome, FISH, karyotyping, chromosomal aberration.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,General Medicine,Biotechnology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献