Alpine limnology of the Rocky Mountains of Canada and the USA in the context of environmental change

Author:

Redmond Laura E.11

Affiliation:

1. Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.

Abstract

The cumulative impacts of multiple environmental and anthropogenic stressors on freshwater biodiversity have been studied in systems across the globe. The magnitude of multiple interdependent stressors on alpine systems may lead to increased primary productivity and jeopardize these unique communities. In this review, the consequences of individual stressors on alpine lake and pond ecology are synthesized, as well as the cumulative and potentially synergistic or antagonistic effects of multiple stressors. Beside temperature variability, other stressors reviewed include ultra violet (UV) radiation, organic pollutants, nutrient deposition, and biological invasions. Each stressor was evaluated individually and in combination with increasing water temperatures. In alpine environments, climatic warming is anticipated to increase with elevation, therefore amplifying the effects of temperature-related responses. The purpose of this review is to highlight the ecological effects of climate change on alpine lakes and ponds in the Rocky Mountains of North America and fill knowledge gaps between disciplines of aquatic studies. This work underscores that to better understand and face the overall effects of climate change on alpine biota, investigations must continue to assess the compounded impacts of multiple stressors. Emphasis must be put on the standardization of monitoring methods across alpine regions to aid in consistent trend and prediction analysis within the context of both current and future climate change.

Publisher

Canadian Science Publishing

Subject

General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3