Stable isotopes as tracers in aquatic ecosystems

Author:

Sánchez-Carrillo Salvador11,Álvarez-Cobelas Miguel11

Affiliation:

1. Department of Biogeochemistry and Microbial Ecol., National Museum of Natural Sciences, Spanish National Research Council (MNCN-CSIC), Serrano 115 dpdo, E-28006-Madrid, Spain.

Abstract

The addition of stable isotopes (SI) of 13C and 15N has been used to study several aquatic processes, thus avoiding environmental disturbance by the observer. This approach, employed for the last three decades, has contributed to expanding our knowledge of food-web ecology and nutrient dynamics in aquatic systems. Currently, SI addition is considered a powerful complementary tool for studying several ecological and biogeochemical processes at the whole-aquatic-ecosystem scale, which could not be addressed otherwise. However, their contributions have not been considered jointly nor have they been evaluated with a view to assessing the reliability and scope of their results from an ecosystem perspective. We intend to bridge this gap by providing a comprehensive review (78 scientific publications reporting in situ 13C/15N additions at the whole-aquatic-ecosystem scale) addressing the main results arising from their use as tracers. Specifically, we focus on: (i) reasons for SI additions at the whole-ecosystem scale to study ecological processes, (ii) the paradigms resulting from its use and the insights achieved, (iii) uncertainties and drawbacks arising from these SI addition experiments, and (iv) the potential of this approach for tackling new paradigms. SI tracer addition at the ecosystem scale has provided new functional insights into numerous ecological processes in aquatic sciences (importance of subsidies in lakes; heterotrophy dominance in benthic food webs in lakes, wetlands and estuaries; the decrease in N removal efficiency in most aquatic ecosystems due to anthropogenic alteration; the recognition of hyporheic zones and floodplains as hot spots for stream denitrification; and high rates of internal N recycling in tidal freshwater marshes). However, certain constraints such as the high cost of isotopes, the maintenance of the new isotopic steady state, and avoidance of biomass changes in any compartment or pool during tracer addition bear witness to the difficulties of applying this approach to all fields of aquatic ecology and ecosystems. The future development of this approach, rather than expanding to larger and complex aquatic ecosystems, should include other stable isotopes such as phosphorus (P18O4).

Publisher

Canadian Science Publishing

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3