Development of a cobalt (II) and 1,10-phenanthroline carboxaldehyde-based fluorescent probe for the detection of cysteine

Author:

Zhang Haoshun1,Lan Peiyu2,Yang Qinnan2,Li Ciling3,Zhao Liting3,Kang Xinhuang3,Li Yubin34ORCID

Affiliation:

1. Faculty of Oceanography & Meteorology, Guangdong Ocean University, Zhanjiang 524088, China

2. Faculty of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China

3. Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China

4. Research Center for Coastal Environmental Protection and Ecological Resilience, Guangdong Ocean University, Zhanjiang 524088, China

Abstract

Effective cysteine (Cys) detection is extremely important for early disease monitoring and diagnosis. In this study, a fluorescent probe (PHO) comprising 1,10-phenanthroline carboxaldehyde as the ligand and cobalt as the central ion was synthesized to detect Cys. The synthesized PHO exhibited enhanced fluorescence at 603 nm in the presence of Cys in HEPES buffer. Furthermore, the probe detected Cys concentrations as low as 0.6 μmol/L, demonstrating high sensitivity. Additionally, a strong linear relationship was established between the Cys concentration and normalized intensity of fluorescence. Importantly, the high selectivity was retained even in the presence of other interfering compounds. Consequently, this method can serve as a novel approach for detecting Cys in physiological systems.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3