Crystal growth and structural and optical characterizations of mixed-cation MA1−xCsxPbBr3 halide perovskite solid solutions

Author:

Bari Maryam1,Ruan Jessy J.E.1,Lin Yihan1,Pells Jefferson A.1,Leach Gary W.1ORCID,Leznoff Daniel B.1,Ye Zuo-Guang1ORCID

Affiliation:

1. Department of Chemistry and 4D LABS, Simon Fraser University, Burnaby, BC V5A 1S6, Canada

Abstract

Photovoltaic devices fabricated using mixed-cation halide perovskites have demonstrated a superior combination of high efficiency and long operating life. In this study, we synthesize a series of mixed-cation halide perovskites with the composition of MA1− xCs xPbBr3 (MA = CH3NH3), where x varies from 0 to 1. We carefully examine various polar solvents and develop a relatively facile, room temperature solution-based growth method for growing these single crystals under optimal conditions. We conduct a comprehensive investigation of the influence of the Cs+ cation on the structure and optical properties of the perovskite solid solutions. The structural characterization using X-ray diffraction confirms the successful substitution of cesium for the methylammonium (MA) cation in the MA1− xCs xPbBr3 perovskite structure, with a continuous solubility. As the Cs+ content increases, the crystal structure undergoes a gradual transformation from a cubic phase (for MAPbBr3) to an orthorhombic phase (for CsPbBr3). To study the impact of Cs substitution on their optical properties, we perform UV–Vis absorption analysis, and find no significant change in the bandgap value, which remains approximately 2.12–2.14 eV for the compositions with x up to 0.7. For x > 0.7, however, the bandgap value gradually increases to reach 2.21 eV for pure CsPbBr3. This work demonstrates a valid technique for the growth of halide perovskite solid solution crystals, which can be a versatile tool for tailoring the structure, long-term stability, and optoelectronic properties for advanced photovoltaic applications.

Funder

Natural Sciences and Engineering Research Council of Canada

Office of Naval Research

Publisher

Canadian Science Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3