STUDIES OF LIGNIN BIOSYNTHESIS USING ISOTOPIC CARBON: VII. THE ROLE OF p-HYDROXYPHENYLPYRUVIC ACID

Author:

Brown Stewart A.1,Wright D.1,Neish A. C.1

Affiliation:

1. National Research Council, Prairie Regional Laboratory, Saskatoon, Saskatchewan

Abstract

L-Phenylalanine-C14 and p-hydroxyphenylpyruvic acid-3-C14 were administered to wheat, buckwheat, and salvia (Salvia splendens Sello), and after 24 hours the "lignin aldehydes" (p-hydroxybenzaldehyde, vanillin, and syringaldehyde) were isolated following alkaline nitrobenzene oxidation of the plant fraction insoluble in ethanol–benzene and water. Although all species converted phenylalanine readily to lignin, only wheat could form the syringyl and guaiacyl parts of lignin efficiently from p-hydroxyphenylpyruvic acid. p-Hydroxybenzaldehyde recovered from all species was heavily labelled after feeding both compounds. The L-tyrosine from acid hydrolysis and the p-hydroxybenzaldehyde from nitrobenzene oxidation, isolated from buckwheat activated by feeding p-hydroxyphenylpyruvic acid-3-C14, had the same molar specific activity, and it is considered probable that most if not all of the p-hydroxybenzaldehyde in all these species was derived from protein tyrosine in the extracted residue. When p-hydroxyphenyllactic acid-3-C14 was metabolized by wheat all the aldehydes were labelled, but none possessed measurable radioactivity when this compound was administered to buckwheat. Consequently, neither p-hydroxyphenylpyruvic nor p-hydroxyphenyllactic acid is a general intermediate in lignification, and differences noted here and in previous papers between grasses and non-grasses probably result from the unique ability of grasses to convert p-hydroxyphenyllactic acid to p-hydroxycinnamic acid. This idea is supported by the ability of wheat to form p-hydroxycinnamic and ferulic acids readily from both phenylalanine and tyrosine, whereas only phenylalanine is a good precursor of these acids in salvia. A scheme is presented showing the metabolic interconversions of phenylpropanoid acids and related compounds leading to lignin.

Publisher

Canadian Science Publishing

Subject

General Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3