An investigation of the ion–molecule interactions of protonated glycine with ammonia by high pressure mass spectrometry and ab initio calculations

Author:

Wu Ronghu,McMahon Terry B

Abstract

The thermochemistry of gas-phase ion molecule interactions and the structures of various clusters between protonated glycine (GlyH+), glycine, and ammonia have been studied by high pressure mass spectrometry (HP-MS) and ab initio calculations. For the association reactions of GlyH+ with NH3, Gly(NH3)H+ with NH3, and (Gly)2H+ with NH3, the enthalpy changes experimentally determined are –23.2, –18.3, and –19.1 kcal mol–1 (1 cal = 4.184 J), respectively. For all clusters investigated, the measured binding enthalpies are in excellent agreement with those obtained from ab initio calculations at the B3LYP/6-311+G(d,p) level of theory. Different isomers of each of these clusters have been obtained and the corresponding binding energies have been computed. The potential energy surface for isomerization of the clusters of protonated glycine with ammonia has also been computed at the same level. For this cluster, the three most stable isomers all involve a proton transfer from protonated glycine to ammonia. According to the calculated potential energy surface, the barrier between GN4, the least stable isomer, and the most stable isomer (GN1) is 11.5 kcal mol–1 at 298 K. Thus, this isomerization will be facile given the exothermicity of the association reaction. Therefore, a statistical distribution of isomers will be present under thermal equilibrium conditions. Single point energy calculations at the MP2(full)/6-311++G(2d,2p)//B3LYP/6-311+G(d,p) level of theory reveal that the isomer GN2 in which glycine has a zwitterionic structure has the same energy as the most stable non-zwitterionic isomer GN1. NH4+ evidently may stabilize the zwitterionic structure of glycine. In contrast, N2H7+ and GlyH+ are not as effective in stabilizing the zwitterionic structure of glycine. This likely results from the more localized charge in NH4+ giving rise to stronger hydrogen bonds with the carboxylate moiety of zwitterionic glycine. This conjecture is supported by the computational results.Key words: high pressure mass spectrometry, glycine, gas-phase ion thermochemistry, ab initio calculations, cluster structure.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3