In vitro evaluation of the effect of nicotine, cotinine, and caffeine on oral microorganisms

Author:

Cogo Karina1,Montan Michelle Franz1,Bergamaschi Cristiane de Cássia1,D. Andrade Eduardo1,Rosalen Pedro Luiz1,Groppo Francisco Carlos1

Affiliation:

1. Department of Physiological Sciences, Area of Pharmacology, Anesthesiology and Therapeutics, Dentistry School of Piracicaba, State University of Campinas (UNICAMP), Avenida Limeira, 901, Piracicaba, Sao Paulo 13414-903, Brazil.

Abstract

The aim of this in vitro study was to evaluate the effects of nicotine, cotinine, and caffeine on the viability of some oral bacterial species. It also evaluated the ability of these bacteria to metabolize those substances. Single-species biofilms of Streptococcus gordonii , Porphyromonas gingivalis , or Fusobacterium nucleatum and dual-species biofilms of S. gordonii – F. nucleatum and F. nucleatum – P. gingivalis were grown on hydroxyapatite discs. Seven species were studied as planktonic cells, including Streptococcus oralis , Streptococcus mitis , Propionibacterium acnes , Actinomyces naeslundii , and the species mentioned above. The viability of planktonic cells and biofilms was analyzed by susceptibility tests and time-kill assays, respectively, against different concentrations of nicotine, cotinine, and caffeine. High-performance liquid chromatography was performed to quantify nicotine, cotinine, and caffeine concentrations in the culture media after the assays. Susceptibility tests and viability assays showed that nicotine, cotinine, and caffeine cannot reduce or stimulate bacterial growth. High-performance liquid chromatography results showed that nicotine, cotinine, and caffeine concentrations were not altered after bacteria exposure. These findings indicate that nicotine, cotinine, and caffeine, in the concentrations used, cannot affect significantly the growth of these oral bacterial strains. Moreover, these species do not seem to metabolize these substances.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3