Steric effects on the self-association of branched and cyclic alcohols in inert solvents. Apparent heat capacities of secondary and tertiary alcohols in hydrocarbons

Author:

Cáceres-Alonso Mercedes,Costas Miguel,Andreoli-Ball Lina,Patterson Donald

Abstract

Apparent heat capacities have been measured for fifteen branched and cyclic alcohols in dilute n-decane solution at 25 °C. The alcohols were 2-methyl-2-propanol, cyclohexanol, 3-methyl-3-pentanol, trans-, cis-, and mixed isomer 2-methylcyclohexanol, 1-methylcyclohexanol, 3-ethyl-3-pentanol, cyclooctanol, 3,7-dimethyl-1-octanol, 5-decanol, 4-propyl-4-heptanol, cyclododecanol, 5-butyl-5-nonanol, and 8-hexadecanol (in n-hexane). Excess heat capacities CpE throughout the concentration range were measured at 25 °C for: 1-hexanol + n-hexadecane (n-C16) and + 2,2,4,4,6,8,8-heptamethylnonane (br-C16), 4-propyl-4-heptanol, and 1-decanol + n-decane, 3-methyl-3-pentanol + n-C16 and + br-C16 and at 27 °C for cyclohexanol + n-C16 and + br-C16. Also, for 3-methyl-3-pentanol + n-decane CpE was measured at 10, 25, 40, and 50 °C. For a series of isomeric alcohols, the apparent molar heat capacities show a maximum against concentration which decreases and moves to higher alcohol concentration as the hydroxyl group on the alcohol becomes increasingly hindered, effectively reducing the alcohol self-association capabilities. This situation is also reflected by the heat capacities of the pure alcohols which increase strongly in magnitude in going from a linear 1-alcohol to an isomeric alcohol which has its hydroxyl group on a quaternary carbon atom. CpE of the mixtures are negative at low alcohol concentrations turning positive at increasingly higher alcohol concentrations as the steric hindrance on the hydroxyl group increases. Throughout most of the concentration range CpE for the branched or cyclic alcohols is considerably more positive than for the corresponding isomeric 1 -alcohol. For the highly hindered 3-methyl-3-pentanol CpE(T) passes through a maximum. All of the above behaviour is explained by the Treszczanowicz–Kehiaian model for self-associated liquids + inert solvents which has been applied to the present data. Equilibrium constants have been obtained for alcohol association and are sensitive to alcohol structure. At low alcohol concentrations, while for the linear 1-alcohols tetramers are the predominant species and dimer are almost absent, for the corresponding isomeric alcohols the concentration of tetramers is severely reduced and the lower species, i.e. trimers and dimers, are more important. For the highly hindered alcohols, monomers are the predominant species in dilute solution reflecting the decrease in self-association ability that steric hindrance of the hydroxyl group imposes on them.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3