Nitric oxide as putative nonadrenergic noncholinergic inhibitory transmitter in the opossum sphincter of Oddi

Author:

Allescher H. D.,Lu S.,Daniel E. E.,Classen M.

Abstract

The sphincter of Oddi has a typical nonadrenergic noncholinergic inhibitory innervation; however, the transmitter of this inhibition has not been identified. The aim of the present study was to evaluate whether metabolites of the L-arginine – nitric oxide synthase pathway mediate neural inhibition in the sphincter of Oddi of the opossum. Electrical field stimulation at various frequencies (3, 5, and 10 pulses/s), performed in the presence of guanethidine (106 M) to exclude adrenergic responses, caused a slight, but significant excitatory response of the sphincter of Oddi. The responses were more pronounced at the duodenal side of the sphincter of Oddi than on the hepatic side. When the electrical field stimulation was repeated after blockading muscarinic receptors, using atropine (106 M), a potent inhibitory response was obtained. The inhibitory response to each of the various stimulation parameters was similar. Addition of L-arginine methyl ester (L-NAME, 2 × 10−4 M) abolished and reversed the inhibitory effect of electrical field stimulation, resulting in a potent stimulatory effect. Higher frequencies (5 and 10 pulses/s) were more potent in causing a stimulatory response than lower frequencies (3 pulses/s). The excitatory effect of electrical field stimulation was blocked or reversed to inhibition when the amino acid L-arginine (2 × 10−3 M) was added to the bath. In a second series of experiments, the inhibitory effect of electrical field stimulation in the presence of atropine and guanethidine was not prevented after the addition of methylene blue (5 × 10−5 M), a substance that, in vascular smooth muscle, has been demonstrated to block cyclic GMP dependent inhibitory responses. These data demonstrate that the sphincter of Oddi is characterized by an excitatory innervation that is partly cholinergic and partly nonadrenergic noncholinergic (NANC), while the NANC inhibitory response of this sphincter muscle is mediated by the release of endogenous nitric oxide or related compounds.Key words: nonadrenergic, noncholinergic, nitric oxide, L-arginine, sphincter of Oddi, methylene blue.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gall Bladder Function;Drug Discovery and Evaluation: Pharmacological Assays;2016

2. Motility of the Biliary Tract;Yamada' s Textbook of Gastroenterology;2015-11-27

3. Multidisciplinary approach to nitric oxide signaling: Focus on gastrointestinal and central nervous system;Vojnosanitetski pregled;2015

4. Gallbladder Function;Drug Discovery and Evaluation: Pharmacological Assays;2014

5. Rat duodenal motility in vitro: Prokinetic effects of DL-homocysteine thiolactone and modulation of nitric oxide mediated inhibition;Archives of Biological Sciences;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3