Author:
Xiong Zhi-Gang,MacDonald J F
Abstract
Transient changes in the intracellular concentration of Ca2+ provide a major signal for the regulation of many ion channels and enzymes in central neurones. In contrast, changes in extracellular Ca2+ are thought to play little or no signaling role. However, concentrations of extracellular calcium in the central nervous system do change dramatically during intense physiological and pathological stimulation, and recent studies have identified a number of membrane proteins that can sense and respond to changes in extracellular Ca2+. These include the recently cloned Ca2+-sensing receptor, hemi-gap-junction channels, and a potential Ca2+-sensing cation channel. Lowering extracellular Ca2+ strongly depolarizes and excites cultured hippocampal neurones. The excitation can be detected with decreases from physiological concentrations of as little as 100 µM. The depolarization results from activation of a nonselective cation current, which is sensitive to block by divalent and polyvalent cations. In outside-out patches, lowering Ca2+ induces a single-channel current with a conductance of 36 pS. Activation of this cation channel, in response to decreases in extracellular Ca2+, likely plays a key role in a positive feedback system of excessive neuronal depolarization, which accompanies intense excitatory activity in the hippocampus.Key words: nonselective cation channel, calcium-sensing receptor, calcium-sensing channel, hemi-gap channels, extracellular calcium.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献