Abstract
An investigation was made of the effects of bathing media low in divalent cations on rapid axonal transport in the sciatic nerve of the amphibian Xenopus laevis. The anterograde transport of a pulse of [35S]methionine proteins was observed using a multiple proportional counter as the detector. Organelles undergoing anterograde and retrograde transport were detected by light microscopy. The structure of nerve fibres was examined by light and electron microscopy. There was no significant difference in the anterograde transport of proteins in nerves bathed in normal medium (NM) containing millimolar Ca2+ and Mg2+ and in those bathed in calcium-free medium (CaFM) containing Mg2+. The anterograde transport of labelled proteins continued at a normal velocity in nerves bathed in divalent cation free medium (DCFM) for at least 14 h. DCFM did cause some alterations in protein transport: the ratio of the plateau (following pulse passage) to the peak radioactivity was increased, the pulse amplitude decreased more rapidly, and the label continued to arrive at the distal end of the nerve for >16 h. Anterograde and retrograde organelle transport continued normally for periods of [Formula: see text] in fibres bathed in DCFM. All myelinated fibres became distorted within 4 h in DCFM. Similar distortion was rare in fibres bathed in CaFM. The results indicate that axonal transport in Xenopus is largely independent of lowered concentrations of divalent cations in the bathing medium. Those alterations in axonal transport that were produced by DCFM may have been secondary to morphological changes in the nerve fibres.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献