Abstract
The roles of Ca2+ in excitation–contraction coupling in vascular smooth muscle have been difficult to delineate, primarily because unambiguous association of specific Ca2+ components with morphologically defined cellular structures could not be attained. More recent use of washouts in La3+-substituted solutions at low temperature (to remove superficial Ca2+ and retain cellular Ca2+), Scatchard-coordinate plots (to identify incubation conditions appropriate for examining predominantly high or low affinity Ca2+ components), and high concentrations of Sr2+ (to remove high but not low affinity Ca2+) have facilitated qualitative and quantitative separation of different Ca2+ fractions. The release of high affinity Ca2+ elicited with norepinephrine and the increase in uptake of low affinity Ca2+ obtained with high K+ have been clearly demonstrated, and may directly measure or indirectly reflect changes in the level of intracellular free Ca2+. In other types of vascular smooth muscle (e.g., renal vessels, coronary arteries), similar Ca2+ components also appear to be present, but their relative size and functional importance for regulation of contractile responsiveness can differ.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献