Estimation of diameter distributions by means of airborne laser scanner data

Author:

Breidenbach Johannes123,Gläser Christian123,Schmidt Matthias123

Affiliation:

1. Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, Abteilung Biometrie und Informatik, Wonnhaldestrasse 4, 79100 Freiburg, Germany.

2. Institut für Statistik und Ökonometrie, Georg-August-Universität Göttingen, Platz der Göttinger Sieben 5, 37073 Göttingen, Germany.

3. Nordwestdeutsche Forstliche Versuchsanstalt, Abteilung Waldwachstum, Grätzelstrasse 2, 37079 Göttingen, Germany.

Abstract

Diameter distributions are an important source of information for estimating the timber assortment in forest stands. In this paper, a one-step procedure for deriving the parameters of a Weibull function, itself used to describe diameter distributions, is presented. A generalized linear model (GLM) is employed that allows for an estimation of the shape and scale parameters as functions of different predictors. The GLM was fit using 495 sample plots from a conventional sample-plot inventory. Plotwise height metrics derived from airborne laser scanner data serve as covariates (auxiliary variables). Each sample plot consists of four concentric circle plots, where the largest plot covers an area of 450 m2 (12 m radius). Trees with a diameter at breast height (DBH) <30 cm are measured only on the smaller circle plots. Because of this design, left- and right-truncated Weibull distributions, conditional on the DBH, were used to fit the data. The frequently used two-step procedure — in which the Weibull distribution is firstly fitted via maximum likelihood, and its parameters are then estimated via linear regression — requires an adequate number of observations per sample plot in the first step. Hence, this method would have been unsuitable for the data source at hand, because a mean of just 12 trees per sample plot was recorded. The visual comparison of the predicted Weibull distributions with observed data shows a good fit to the data. The mean of the DBH distributions was estimated with a root mean square error (RMSE) of 2.44 cm and a bias of 0.41 cm.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3