Affiliation:
1. Department of Geography, Water and Environmental Science Centre, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada.
2. Parks Canada, Waterton Lakes National Park, P.O. Box 200, Waterton Lakes, AB T0K 2M0, Canada.
Abstract
Photosynthetic gas-exchange characteristics were measured in Pinus flexilis James (limber pine) during two drought years in a xeric, subalpine ecosystem of the Rocky Mountains. Limber pine exhibited conservative water-use traits, including low specific leaf area, leaf nitrogen, stomatal conductance, transpiration (E), and light-saturated net photosynthesis (Amax), but exhibited high needle longevity, water-use efficiency (Amax/E), and stable carbon isotope composition. Net photosynthesis declined strongly with leaf-to-air vapour pressure deficit, resulting in a bimodal seasonal pattern of Amax. Although very little gas exchange was observed in late summer, photosynthetic activity extended into October. The avoidance of gas exchange during high atmospheric demand maximized whole-season water-use efficiency. Leaf temperature and leaf-to-air vapour pressure deficit were higher on south-facing slopes during both moderate (2006) and severe (2007) drought. Severe drought caused lower stomatal conductance and E on the southeast-facing slope, but neither Amax nor canopy reflectance indices differed among slope aspects. Although Amax was lower in 2007 than 2006, branch-length increment did not differ. Foliar stable carbon isotope composition was higher in needles produced in dry years but did not vary among slope aspects. These results indicate that physiological acclimation to water stress prevented among-aspect differences in Amax and that shoulder-season photosynthesis may become increasingly important in a warmer climate.
Publisher
Canadian Science Publishing
Subject
Ecology,Forestry,Global and Planetary Change
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献