Author:
Piers Edward,Chong J. Michael,Gustafson Kirk,Andersen Raymond J.
Abstract
Treatment of ethyl 2-pentynoate (14) with lithium (phenylthio)(tri-n-butylstannyl)cuprate (12) afforded, in 76% yield, ethyl (Z)-3-(tri-n-butylstannyl)-2-pentenoate (15). On the other hand, when compound 14 was allowed to react with the (tri-n-butylstannyl)copper reagent 13, ethyl (E)-3-(tri-n-butylstannyl)-2-pentenoate (21) was produced in 83% yield. Reduction (diisobutylaluminum hydride, ether) of the esters 15 and 21 gave the alcohols 16 and 22, respectively. Treatment of each of the latter substances with pyridine – sulfur trioxide complex, followed by further reduction of the resultant intermediates with lithium aluminum hydride, provided the geometrically isomeric alkenylstannanes 17 and 23. Conjugate addition of (E)-3-lithio-2-pentene (18) (formed by transmetalation of 17) to compound 19 produced the olefinic trimethylhydrazide 20, which was converted (diisobutylaluminum hydride, ether; pyridinium dichromate, dimethylformamide) into the corresponding carboxylic acid 2. Subjection of compound 23 to a sequence of reactions identical with that used for the conversion of 17 into 2 provided the isomeric acid 3, which was identical (infrared, 1H nmr) with the natural acid derived from triophamine (1). Conversion of 3 into the p-nitrophenyl ester 26, followed by condensation of the latter substance with guanidine, afforded a chromatographically separable mixture of (±)-triophamine (1) and the corresponding diastereomer.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献