Abstract
The behaviour of Chelyosoma productum and Corella inflata (Ascidiacea) was studied in normal and deganglionated animals. Chelyosoma productum lived for over a year after deganglionation and the ganglion did not regenerate. Electrophysiological recordings were made from semi-intact preparations. Responses to stimulation and spontaneous activity continued to be transmitted through the body wall and branchial sac after deganglionation. Spread was slow, decremental, and facilitative. Treatment with >10 µg·mL-1d-tubocurarine abolished all responses, indicating that nerves mediate conduction of excitation after deganglionation. Histological study using cholinesterase histochemistry and immunolabelling with antisera against tubulin and gonadotropin-releasing hormone showed no evidence of a peri pheral nerve net in regions showing conduction, contrary to previous claims. The cell bodies of the motor neurones were found to lie entirely within the ganglion or its major roots. Their terminal branches intermingled to form netlike arrays. Sensory neurons were identified with cell bodies in the periphery, in both the body wall and the branchial sac. Their processes also intermingled in netlike arrays before entering nerves going to the ganglion. It is concluded that the "residual" innervation that survives deganglionation is composed of either interconnected motor nerve terminals, interconnected sensory neurites, or some combination of the two. In re-inventing the nerve net, ascidians show convergent evolution with sea anemones, possibly as an adaptation to a sessile existence.
Publisher
Canadian Science Publishing
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献