Author:
Krechel Annette,Faupel Annekathrin,Hallmann Johannes,Ulrich Andreas,Berg Gabriele
Abstract
To study the effect of microenvironments on potato-associated bacteria, the abundance and diversity of bacteria isolated from the rhizosphere, phyllosphere, endorhiza, and endosphere of field grown potato was analyzed. Culturable bacteria were obtained after plating on R2A medium. The endophytic populations averaged 103and 105CFU/g (fresh wt.) for the endosphere and endorhiza, respectively, which were lower than those for the ectophytic microenvironments, with 105and 107CFU/g (fresh wt.) for the phyllosphere and rhizosphere, respectively. The composition and richness of bacterial species was microenvironment-dependent. The occurrence and diversity of potato-associated bacteria was additionally monitored by a cultivation-independent approach using terminal restriction fragment length polymorphism analysis of 16S rDNA. The patterns obtained revealed a high heterogeneity of community composition and suggested the existence of microenvironment-specific communities. In an approach to measure the antagonistic potential of potato-associated bacteria, a total of 440 bacteria was screened by dual testing for in vitro antagonism towards the soilborne pathogens Verticillium dahliae and Rhizoctonia solani. The proportion of isolates with antagonistic activity was highest for the rhizosphere (10%), followed by the endorhiza (9%), phyllosphere (6%), and endosphere (5%). All 33 fungal antagonists were characterized by testing their in vitro antagonistic mechanisms, including their glucanolytic, chitinolytic, pectinolytic, cellulolytic, and proteolytic activity, and by their BOX-PCR fingerprints. In addition, they were screened for their biocontrol activity against Meloidogyne incognita. Overall, nine isolates belonging to Pseudomonas and Streptomyces species were found to control both fungal pathogens and M. incognita and were therefore considered as promising biological control agents. Key words: biocontrol, antagonistic potential, plant-associated bacteria.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
158 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献