MicroRNA-149 is epigenetically silenced tumor-suppressive microRNA, involved in cell proliferation and downregulation of AKT1 and cyclin D1 in human glioblastoma multiforme

Author:

Ghasemi Asghar1,Fallah Soudabeh23,Ansari Mohammad1

Affiliation:

1. Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.

2. Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.

3. Research Center of Pediatric Infection Disease, Hazrat Rasol Akram Hospital of Iran University of Medical Sciences.

Abstract

Aberrant DNA methylation has been shown to inactivate tumor suppressor genes during carcinogenesis. MicroRNA-149 (miR-149) was recently demonstrated to function as a tumor suppressor gene in glioblastoma multiforme (GBM). However, the potential linkage of miR-149 levels and the underlying epigenetic regulatory mechanism in human GBM has not been studied. We used quantitative real-time polymerase chain reaction to investigate the levels of miR-149 in GBM tissues, their matched adjacent normal tissues, and glioblastoma U87MG cell line. Using bisulfite genomic sequencing technology, DNA methylation status of upstream region of miR-149 was evaluated in study population groups and the U87MG cell line. After treatment of cells with 5-aza-2′-deoxycitidine (5-aza-dC), the DNA methylation status, gene expression, and target protein levels of miR-149 were investigated. Our studies revealed that methylation and expression levels of miR-149 were significantly increased and decreased, respectively in GBM patients relative to the adjacent normal tissues (P < 0.01). MiR-149 suppressed the expression of AKT1 and cyclin D1 and reduced the proliferative activities of the U87MG cell line. Treatment of U87MG cells with 5-aza-dC reversed the hypermethylation status of miR-149, enhanced the expression of its gene, and decreased target mRNA and proteins levels (P < 0.01). These findings suggest that the methylation mechanism is associated with decreased expression levels of miR-149, which may in turn lead to the increased levels of its oncogenic target proteins.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3