Effect of pH on the structure, function, and stability of human calcium/calmodulin-dependent protein kinase IV: combined spectroscopic and MD simulation studies

Author:

Naz Huma1,Shahbaaz Mohd.2,Bisetty Krishna2,Islam Asimul1,Ahmad Faizan1,Hassan Md. Imtaiyaz1

Affiliation:

1. Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.

2. Department of Chemistry, Durban University of Technology, Durban-4000, South Africa.

Abstract

Human calcium/calmodulin-dependent protein kinase IV (CAMKIV) is a member of Ser/Thr protein kinase family. It is regulated by the calcium–calmodulin dependent signal through a secondary messenger, Ca2+, which leads to the activation of its autoinhibited form. The over-expression and mutation in CAMKIV as well as change in Ca2+ concentration is often associated with numerous neurodegenerative diseases and cancers. We have successfully cloned, expressed, and purified a functionally active kinase domain of human CAMKIV. To observe the effect of different pH conditions on the structural and functional properties of CAMKIV, we have used spectroscopic techniques such as circular diachroism (CD) absorbance and fluorescence. We have observed that within the pH range 5.0–11.5, CAMKIV maintained both its secondary and tertiary structures, along with its function, whereas significant aggregation was observed at acidic pH (2.0–4.5). We have also performed ATPase activity assays under different pH conditions and found a significant correlation between the structure and enzymatic activities of CAMKIV. In-silico validations were further carried out by modeling the 3-dimensional structure of CAMKIV and then subjecting it to molecular dynamics (MD) simulations to understand its conformational behavior in explicit water conditions. A strong correlation between spectroscopic observations and the output of molecular dynamics simulation was observed for CAMKIV.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3