Aerosol survival of Serratia marcescens as a function of oxygen concentration, relative humidity, and time

Author:

Cox C. S.,Gagen S. J.,Baxter Jean

Abstract

Previously the kinetics of loss of viability of freeze-dried Serratia marcescens 8UK were determined by Cox and Heckly as a function of oxygen concentration and time. Results are presented here when dehydration is brought about by aerosolization into atmospheres of low relative humidity (RH) rather than by freeze-drying. As for freeze-dried S. marcescens, oxygen was toxic and viable decay followed the same kinetics with respect to oxygen concentration and time. The influence of RH upon viable decay (which was not studied in the previous report) was that above 65% RH oxygen was not toxic but was progressively more toxic as the humidity was further reduced. Kinetic analyses of the results indicate that the site for the toxic action of oxygen lies in the interspace between the cytoplasmic membrane and the cell wall. Such a finding is consistent with other data which suggest that cell division and (or) cell wall synthesis in bacteria are inhibited by oxygen.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3