The metabolism of 3-cyclohexenecarboxylic acid by Alcaligenes faecalis

Author:

Blakley E. R.,Papish B.

Abstract

Alcaligenes faecalis, grown on 3-cyclohexenecarboxylic acid supplemented with gluconate, was induced to metabolize cyclohexanecarboxylic acid, 3-cyclohexenecarboxylic acid, 1, 4-cyclohexadienecarboxylic acid, benzoic acid, and catechol. During growth, 1, 4-cyclohexadienecarboxylic acid, 3-heptene-1, 7-dioic acid, and benzoic acid were shown to be present in the culture supernatants. The results suggest that 3-cyclohexenecarboxylic acid may be metabolized by two pathways having 1, 4-cyclohexadienecarboxylic acid as a common intermediate. One pathway involved β-oxidation of coenzyme A intermediates; the other pathway involved benzoic acid as an intermediate. Studies on the consumption of oxygen per mole of substrate by cell suspensions indicated that the major portion of 3-cyclohexenecarboxylic acid was metabolized by the pathway involving benzoic acid. When grown on 3-cyclohexenecarboxylic acid as sole carbon and energy source, the organism was additionally induced to metabolize salicylic acid and gentisic acid, and growth medium contained salicylic acid. Thus, under the latter growth conditions a pathway involving salicylic acid as an intermediate was also induced.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3