Author:
Tabisz G. C.,Allin Elizabeth J.,Welsh H. L.
Abstract
The intensity profiles of some of the broad continuous absorption bands of oxygen in the near-infrared and visible regions were measured in the compressed gas over a range of pressures and temperatures. Three single electronic transitions (12 600, 10 600, 07620 Å) and three double transitions (6290, 5770, 4770 Å) were studied in detail. The asymmetry of the band profiles is shown to arise from a Boltzmann relation between the intensity distributions in the high and low frequency wings when the band origin is properly chosen. By assuming an appropriate rotational structure and broadening each rotational transition by a Boltzmann-modified dispersion curve the profiles of the bands could be reproduced with only minor discrepancies. These criteria, along with the well-known quadratic density dependence of the intensity, show that the bands are properly interpreted as collision-induced electronic transitions. The large width of the translational broadening functions required in the analysis indicates that the induction must be predominantly due to overlap interaction. No specific effects of (O2)2 complexes are identifiable in the spectra.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献