An evaluation of the use of dendrochemical analyses in environmental monitoring

Author:

Watmough Shaun A

Abstract

Dendrochemical techniques have been used to monitor historical changes in soil and atmospheric chemistry since the early 1970s. The development of dendrochemistry in environmental monitoring was prompted by early studies which reported that changes in Pb deposition along roadsides and in industrial areas were reflected by changes in the Pb content of tree rings. Early studies were inconclusive; some authors have stated that tree-ring chemistry is not a useful indicator of pollution episodes and that some tree species are clearly better spatial indicators of pollution than historical monitors. This is due to a number of complicating factors, including potential radial translocation of elements, radial tendencies in element concentration from pith to bark, and physiological differences between heartwood and sapwood. A more detailed understanding of element cycling in trees is needed, as at present, the application of dendrochemistry to historical environmental monitoring is strongly dependent on the choice of tree species and the elements to be studied. There is no general consensus as to which tree species are best suited for dendrochemical studies. There are many reports in which the analyses of tree-ring chemistry have been successfully used to reconstruct trace-metal deposition from a variety of sources, including automobiles, metal refineries, and coal burning. Changes in tree-ring chemistry in recent decades have coincided with hypothesized changes in soil chemistry believed to be a result of acidic deposition onto poorly buffered soils. Indications of changes in groundwater quality, volcanic eruptions, and even climate change have been reported to be preserved in the chemical composition of tree rings. An improvement in analytical techniques has allowed multielement analysis on whole wood samples, with very low detection limits and extremely high spatial resolution, enabling intra-annual changes in element composition of tree rings to be determined. The application of dendrochemistry in environmental monitoring is promising, and with a more detailed understanding of nutrient and metal cycling in trees, dendrochemical studies will continue to provide useful information on historical pollution loadings and changes in soil and atmospheric chemistry that is unobtainable from any other source.

Publisher

Canadian Science Publishing

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3