Origins of [H+] Changes in Exercising Skeletal Muscle

Author:

Lindinger Michael I.

Abstract

This brief review describes the main physicochemical factors that contribute to increases in intracellular hydrogen ion concentration ([H+]i) in mammalian skeletal muscle during high intensity exercise. High intensity exercise results in changes in the three main independent physicochemical variables: PCO2, the strong ion difference ([SID]), and total concentration of weak acids and bases ([Atot]), within the intracellular fluid compartment of contracting muscle that result in increased [H+]i. The decrease in [SID] contributes 62% to the increase in [H+]i, due to decreased [K+]i and increased [lactate]i; the decrease in phosphocreatine ([PCr2−]i) exerts an alkalinizing effect. The increase in [Atot], resulting primarily from increases in inorganic phosphate and creatine as a result of PCr2− breakdown, contributes 19% to the increase in [H+]i. An increase in the apparent proton dissociation constant (KA) for [Atot] contributes 7% to the increase in [H+]i. PCO2 is a relatively poor effector of changes in [H+]i, such that a 50-mmHg increase in PCO2 contributes only 12% to the increase in [H+]i during high intensity exercise. Key words: acid-base balance, strong ion difference, phosphocreatine, potassium, carbon dioxide, metabolism

Publisher

Canadian Science Publishing

Subject

Orthopedics and Sports Medicine,Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3