The anatomy of Santalum album (Sandalwood) haustoria

Author:

Tennakoon Kushan U.12,Cameron Duncan D.12

Affiliation:

1. Department of Botany, University of Peradeniya, Peradeniya 20400, Sri Lanka.

2. School of Biological Sciences (Plant and Soil Science), University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen, AB24 3UU, UK.

Abstract

Structural attributes of Santalum album L. (Sandalwood) haustoria have been long overlooked in the literature. This is surprising since successful haustorial formation is key to the survival of individuals of this ecologically and economically important plant. We investigated the morphology of haustoria formed by S. album attached to one of its principal hosts Tithonia diversifolia (Hemsley) A. Gray. The bell-shaped mature haustoria were composed of a peripheral hyaline body and a centrally located penetration peg. The parasite penetration peg can penetrate the host by means of direct pressure and the secretion of cell-wall-degrading enzymes when forming a successful graft union. The latter mechanism is supported by this study as we observed no evidence of collapsed host cells as the result of parasite applied pressure. Upon reaching the xylem tissue of the host root, the penetration peg formed a thin ellipsoidal disc and the host–parasite interface was almost entirely composed of parenchymatous tissue. Luminal continuities were absent between the xylem conducting tissues of the partners, thus suggesting mass flow of solutes is unlikely to occur in this association. High densities of contact parenchyma were found at the host–parasite interface; thus it is probable that these are the principal structures formed by the parasite that facilitate the acquisition of host-derived xylem resources. This study therefore concludes that haustorial anatomy of S. album supports cross membrane (potentially selective) uptake of host-derived solutes as opposed to mass flow via vascular continuity.

Publisher

Canadian Science Publishing

Subject

Plant Science

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3