Response of Radioactive Trace Metals to Acid–Base Titrations in Controlled Experimental Ecosystems: Evaluation of Transport Parameters for Application to Whole-Lake Radiotracer Experiments

Author:

Santschi Peter H.,Nyffeler Urs P.,Anderson Robert F.,Schiff Sherry L.,O'hara Patricia,Hesslein Raymond H.

Abstract

Radiotracer experiments were carried out in 20 enclosures located in two lakes at the Experimental Lakes Area (ELA), northwestern Ontario, to study pathways of trace metal removal from the water column of shallow lakes. Two removal mechanisms were characterized: (1) sorption to and subsequent transport with falling particles and (2) direct adsorption to surface sediments. Our approach was to measure independently the kinetics of radiotracer sorption, fluxes and concentrations for particles, particle settling velocities, and the "equivalent stagnant boundary film." Our radiotracer results enabled us to test the sensitivity of the tracer removal rates on these rate-determining processes using a numerical transport model. Acid titrations of whole ecosystems revealed that some trace metals (e.g. Mn, Co, and Zn) can diffuse back to the water column as the pH is lowered from 6.5 to 4.8 after 18 d, while others remain tightly bound (e.g. Sn, Fe, Se, Cr, Ag, and Hg isotopes). Subsequent CaCO3 additions to bring back the pH to its original value restored the initial removal conditions for acid-sensitive radiotracers, indicating that the pH sensitivity is reversible. Transport parameters for particle-related pathways or diffusive pathways across the sediment–water interface obtained from our enclosure experiments were used to predict the removal rates of "particle-reactive" 60Co and the "diffusive" pathway tracer 134Cs observed in earlier experiments where radiotracers were added to whole lakes or to larger enclosures.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3