Author:
Jarczewski Arnold,Schroeder Grzegorz,Galezowski Wlodzimierz,Leffek Kenneth T.,Maciejewska Urszula
Abstract
The reaction between 2,2-di(4-nitrophenyl)-1,1,1-trifluoroethane and the alkoxide bases ŌCH3, ŌC2H5, ŌnC4H9, ŌCH(CH3)2, and ŌC(CH3)3 in their corresponding alcohol solvents is a multistep reaction with several intermediates: 2,2-di(4-nitrophenyl)-1,1-difluoro-1-alkoxyethane (A), 2,2-di(4-nitrophenyl)-1-fluoro-1-alkoxyethene (B), 2,2-di(4-nitrophenyl)-1,1-dialkoxyethene (C), 2,2-di(4-nitrophenyl)-1,1-difluoroethene (D), and 4,4′-dinitrobenzophene (E). Rate constants and activation parameters have been measured for the appearance of the two stable products B and C. The kinetic deuterium isotope effects for the appearance of B fell in the range of kH/kD = 1 to 2 at 25 °C for the primary and secondary alkoxides, whereas kH/kD = 5.4 at 30 °C for the appearance of D with tert-butoxide. Exchange experiments showed that H/D exchange took place between the substrate and solvent to the extent of 100% with methoxide, 50% with ethoxide and isopropoxide, and 0% with tert-butoxide. It is concluded the HF elimination from the substrate follows an (ElcB)R mechanism with methoxide/methanol, changing to (ElcB)I or E2 with tert-butoxide/tert-butanol.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献