Phenotype microarray screening of carbon sources used by Vibrio cholerae identifies genes regulated by the cAMP receptor protein

Author:

Chen Baoli12,Liang Weili12,Wu Rui12,Liang Pu12,Kan Biao12

Affiliation:

1. National Institute for Communicable Disease Control and Prevention and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, P.O. Box 5, Changping, Beijing 102206, People’s Republic of China.

2. Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, People’s Republic of China.

Abstract

The cyclic AMP receptor protein (CRP) regulates genes involved in carbon source metabolism, iron uptake, and virulence in bacteria. Identifying the carbon sources utilized by bacteria that are regulated by CRP will help elucidate the CRP regulation cascade and associated responses to environmental stimuli. CRP-dependent regulation of carbon source metabolism in Vibrio cholerae is not thoroughly understood. To identify the candidate carbon sources utilized by V. cholerae that are affected by CRP, we used high-throughput screening to compare the metabolic differences between wild-type and CRP mutant strains of V. cholerae O1 El Tor. Phenotype microarray was used for primary screening of the wild-type and mutant strains, followed by minimal media growth assays and quantitative RT-PCR to validate the candidate carbon sources. In total, 24 carbon sources were subject to CRP regulation, 11 of which have not been previously reported in bacteria. The genes known to be involved in the metabolism of 4 of the carbon sources identified were verified by quantitative RT-PCR. In addition, gel shift experiments showed that CRP bound directly to VCA0053 and VC0391 promoters. Overall, this comprehensive analysis of CRP-mediated catabolite control in V. cholerae has identified new candidate carbon sources for in-depth experimental studies.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3