Relationship between water quality parameters and bacterial indicators in a large prairie reservoir: Lake Diefenbaker, Saskatchewan, Canada

Author:

North R.L.1,Khan N.H.2,Ahsan M.1,Prestie C.1,Korber D.R.2,Lawrence J.R.3,Hudson J.J.1

Affiliation:

1. Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada.

2. Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.

3. Environment Canada, National Hydrology Research Centre, 11 Innovation Boulevard, Saskatoon, SK S7N 3H5, Canada.

Abstract

Lake Diefenbaker (LD) is a large reservoir on the South Saskatchewan River used for agricultural irrigation, drinking water, and recreation. Our objectives were to determine the distribution and abundance of bacterial indicators in embayments and the main channel of LD and to relate these to environmental factors. Total coliforms (TCs), fecal coliforms (FCs), and fecal indicator bacteria (i.e., Escherichia coli) were measured concurrently with water quality parameters. Although TCs, FCs, and E. coli were present in LD, they rarely exceeded the TC and FC Canadian Council of Ministers of the Environment (CCME) water quality standards for agricultural use (1000 colony-forming units (CFU) per 100 mL and 100 CFU per 100 mL, respectively). The correlation between the bacterial indicators in the sediments and the water column indicates that higher embayment abundances may be related to sediment loading and (or) resuspension events in these frequently mixed embayments. With higher water temperatures and water levels, as well as higher microbial activity, CCME bacterial limits may be exceeded. The greatest contributor to bacterial indicator abundance was water temperature. We predict that water quality standards will be exceeded more frequently with climate warming.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3