Affiliation:
1. National Research Council Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada.
2. Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1H 8L1, Canada.
Abstract
Lipopolysaccharide (LPS) of Helicobacter pylori exhibits several unique structures, such as Lewis (Le) antigens, α-1,6-glucan, and dd-heptan. To investigate the relationship between LPS structure and resistance to clarithromycin, 41 Canadian isolates of H. pylori were characterized by whole-cell ELISA (enzyme-linked immunosorbent assay), sugar analysis, immunoblotting, and indirect immunofluorescence. The expression of type 2 Lewis X and (or) Lewis Y antigens was detected in 22 of 23 (95.7%) clarithromycin-resistant and in 14 of 18 (77.7%) clarithromycin-susceptible H. pylori strains (P < 0.05), and 8 isolates co-expressed type 1 and type 2 Le antigens (8/41, 19.5%). A significantly higher frequency of α-1,6-glucan (P < 0.01) was detected in clarithromycin-resistant strains than in clarithromycin-susceptible strains (19/23 (82.6%) versus 11/18 (61.1%)). Sugar analysis of selected α-1,6-glucan-positive H. pylori strains confirmed that they frequently contained elevated amounts of dd-heptose. Clarithromycin-resistant isolates were also characterized by low expression levels or absence of CagA (17/23, 73.9%). Indirect immunofluorescence studies carried out on selected H. pylori strains with rabbit immune sera specific for α-1,6-glucan confirmed broad recognition of α-1,6-glucan epitope. The binding was not affected by LPS glycotype of H. pylori isolates examined nor by their CagA status or resistance to clarithromycin. These findings suggest α-1,6-glucan as a potential vaccine target, especially in an era of increasing clarithromycin resistance in H. pylori.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献