Molecular detection and analysis of a novel metalloprotease gene of entomopathogenic Serratia marcescens strains in infected Galleria mellonella

Author:

Tambong J.T.1,Xu R.1,Sadiku A.1,Chen Q.12,Badiss A.3,Yu Q.3

Affiliation:

1. Bacteriology Unit, Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.

2. Triticeae Research Institute, Sichuan Agricultural University, Yaan, Sichuan 625014, People’s Republic of China.

3. Nematology Unit, Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.

Abstract

Serratia marcescens strains isolated from entomopathogenic nematodes (Rhabditis sp.) were examined for their pathogenicity and establishment in wax moth (Galleria mellonella) larvae. All the Serratia strains were potently pathogenic to G. mellonella larvae, leading to death within 48 h. The strains were shown to possess a metalloprotease gene encoding for a novel serralysin-like protein. Rapid establishment of the bacteria in infected larvae was confirmed by specific polymerase chain reaction (PCR) detection of a DNA fragment encoding for this protein. Detection of the viable Serratia strains in infected larvae was validated using the SYBR Green reverse transcriptase real-time PCR assay targeting the metalloprotease gene. Nucleotide sequences of the metalloprotease gene obtained in our study showed 72 single nucleotide polymorphisms (SNP) and 3 insertions compared with the metalloprotease gene of S. marcescens E-15. The metalloprotease gene had 60 synonymous and 8 nonsynonymous substitutions relative to the closest GenBank entry, S. marcescens E-15. A comparison of the amino acid composition of the new serralysin-like protein with that of the serralysin protein of S. marcescens E-15 revealed differences at 11 positions and a new aspartic acid residue. Analysis of the effect of protein variation suggests that a new aspartic acid residue resulting from nonsynonymous nucleotide mutations in the protein structure could have the most significant effect on its biological function. The new metalloprotease gene and (or) its product could have applications in plant agricultural biotechnology.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3