Effects of rate of blood flow on fractional extraction and on uptake of infused noradrenaline by brown adipose tissue in vivo

Author:

Foster David O.,Depocas Florent,Zaror-Behrens Gloria,Frydman M. Lorraine,Lacelle Suzanne

Abstract

The rate of blood flow (Q) to interscapular brown adipose tissue (IBAT) and the arteriovenous difference in plasma noradrenaline (NA) across the tissue were measured in warm-acclimated (WA) or cold-acclimated (CA) rats during infusion of NA at doses of 1–12.5 ng min−1 g−0.74 (approximately 0.2–2.7 μg min−1 kg−1) and in the period of steady calorigenic response associated with steady concentration of NA in arterial plasma (ANA). ANA was linearly related to the dose of NA. Calorigenic response, percentage of cardiac output to IBAT, and Q per gram of IBAT were sigmoid functions of ANA and at their maxima were about 2.5 times greater in CA than in WA rats. The rate of uptake of NA by IBAT increased with ANA and Q, each of which had a major influence on rate, but the coefficient of extraction of NA by the tissue (ENAIBAT) declined. Measurements in rats given a dose of propranolol that partially inhibited the NA-induced increase in Q to IBAT indicated that the decline in ENAIBAT was attributable primarily to the increase in Q rather than to increasing saturation of uptake mechanisms. Diffusion-limited extraction of NA is the probable basis for the effect of Q on ENAIBAT. Possible implications of flow-dependent extraction of NA in studies involving measurements of the uptake of exogenous NA by tissues or organs are discussed.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermoregulatory responses of the inbred heat-tolerant FOK rat to cold;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;1999-08-01

2. Enhanced Nonshivering Thermogenic Activity of the Heat-Tolerant FOK Rat;Annals of the New York Academy of Sciences;1997-03

3. Plasma catecholamine levels during cold adaptation and hibernation in woodchucks (Marmota monax);Journal of Thermal Biology;1982-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3