Size and Age at Metamorphosis in Marine Fishes: An Analysis of Laboratory-Reared Winter Flounder (Pseudopleutonectes americanus) with a Review of Variation in Other Species

Author:

Chambers R. Christopher,Leggett William C.

Abstract

Offspring of adult winter flounder (Pseudopleuronectes americanus) collected from Conception Bay, Newfoundland, were reared from fertilization to metamorphosis. We tested two hypotheses: 1) length and age at metamorphosis are equally variable among individuals and (2) length and age at metamorphosis are not correlated. Length at metamorphosis was significantly less variable than age at metamorphosis when data from all laboratory populations were pooled and in 15 of 18 populations. Coefficients of variation for length and age at metamorphosis for the pooled data were 0.051 and 0.123, respectively. Length and age at metamorphosis were positively correlated when the data were pooled (r = 0.42, p < 0.001) and within 8 of 18 populations. Larvae that metamorphose late do so at larger sizes. When length and age at metamorphosis were converted to growth and developmental rates for the full larval period, significant positive correlations were evident between these rates for the pooled data (r = 0.68, p < 0.001) and within 16 of 18 populations. Larvae that grow slowly, therefore, remain as larvae longer. An examination of published values on size and age at metamorphosis in marine fishes revealed a pattern consistent with our findings both within and among populations and environments: (1) variation in length was less than variation in age at metamorphosis and (2) positive correlations between growth and developmental rates were evident through the larval period. Increased size at metamorphosis may ameliorate competitive effects and reduce the risk of predation in the period immediately following metamorphosis. Due to the considerable variation in the duration of the larval period (age at metamorphosis) the number of individuals that successfully metamorphose and subsequently enter the mature population could be significantly altered under differing environmental conditions.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3