Author:
Vinay P.,Sénécal J.,Noël J.,Chirinian C.,Vinay M. C.,Ammann H.,Boulanger Y.,Gougoux A.,Berteloot A.
Abstract
The transport of glucose by canine thick ascending limbs (TAL) and inner medullary collecting ducts (IMCD) was studied using tubule suspensions and membrane vesicles. The uptake of D-[14C(U)]glucose by a suspension of intact TAL tubules was reduced largely by phloretin (Pt), moderately by phlorizin (Pz), and completely suppressed by a combination of both agents. A selective effect of Pz on the transport of [14C]α-methyl-D-glucoside, but not on 2-[3H]deoxyglucose, was also observed in TAL tubules. In contrast, glucose transport was unaffected by Pz but entirely suppressed by Pt alone in IMCD tubules. The metabolism of glucose was largely suppressed by Pt but unaffected by Pz in both types of tubules. Membrane vesicles were prepared from the red medulla and the white papilla or from TAL and IMCD tubules isolated from these tissues. Vesicle preparations from both tissues demonstrated a predominant carrier-mediated, sodium-independent, Pt- and cytochalasin B-sensitive glucose transport. Following purification of basolateral membrane on a Percoll gradient, the sodium-insensitive D-[14C(U)]glucose transport activity copurified with the activity of the basolateral marker Na+–K+ ATPase in both tissues. However, a small sodium-dependent and Pz-sensitive component of glucose transport was found in membrane vesicles prepared from the red medulla or from thick ascending limb tubules but not from the papilla nor collecting duct tubules. The kinetic analysis of the major sodium-independent processes showed that the affinity of the transporter for glucose was greater in collecting ducts (Km = 2.3 mM) than in thick ascending limbs (Km = 4.9 mM). We conclude that glucose gains access into the cells largely through a basolateral facilitated diffusion process in both segments. However a small sodium–glucose cotransport is also detected in membranes of TAL tubules. The transport of glucose presents an axial differentiation in the affinity of glucose transporters in the renal medulla, ensuring an adequate supply of glucose to the glycolytic inner medullary structures.Key words: basolateral membranes, tubules, medulla, thick ascending limbs, collecting ducts, glucose transport, phlorizin, phloretin, dog.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献