Author:
Rioual Armel,Deflandre André,Lemaire Jacques
Abstract
Mechanisms of the photosensitized cis–trans photoisomerization of 3-penten-2-one which do not imply only classical triplet–triplet energy transfer are proposed; they are based upon measurements of the variations of initial quantum yields of isomerization with the initial donor and acceptor concentrations, the wavelength of excitation, and the nature of the donor and of the solvent. Carbonyl donors (acetophenone, benzophenone, acetone) induce a radical isomerization by a chain process in reducing solvents; the example of acetophenone is specially interesting. In solvents in which the donor is not photoreduced (as benzene or CCl4) classical triplet–triplet energy transfers occur. Sensitization with aromatic donors (benzene, mesitylene) proceeds through triplet–triplet energy transfer at low concentrations of the acceptor. At higher concentrations of acceptor, an exciplex is formed between the ketone and the aromatic in its singlet excited state; this exciplex is deactivated by dissociation and by causing the isomerization of the α,β-unsaturated ketone.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献