Author:
Disanayaka Bimsara W.,Weedon Alan C.
Abstract
The mechanism of the photochemical cycloaddition reaction between N-benzoylindole, 1, and cyclopentene to give cyclobutane adducts 2 and 3 has been examined. The triplet excited state lifetime and quantum yield of intersystem crossing were determined for 1 as (2.8 ± 0.3) × 10−8 s and 0.39 ± 0.01, respectively, using the triplet counting procedure. In addition, the dependence of the quantum yield of cycloadduct formation upon the concentration of cyclopentene and upon the concentration of excited state quenchers has been determined. The results are used to propose a mechanistic model in which the triplet excited state of 1 reacts with cyclopentene to give a triplet 1,4-biradical intermediate. Following spin inversion the biradical intermediate reverts to the ground state starting materials or proceeds to the products 2 and 3; this partitioning, along with the quantum yield of intersystem crossing, gives rise to a limiting quantum yield of cycloaddition at infinite alkene concentration of 0.061. It is calculated that 84% of the biradical intermediates revert to the starting materials and 16% proceed to cycloadducts. The quantum yield data are also used to calculate two independent values of the rate constant for reaction of the triplet excited 1 with alkene; the values are (1.8 ± 0.1) × 107M−1 s−1 and (4.0 ± 0.8) × 106 M−1 s−1'. Some evidence for self quenching of the triplet excited state of 1 by ground state 1 was also observed. The quantum yield of intersystem crossing and the triplet excited state lifetime of 1 were found to vary with the solvent used; this is discussed in terms of the possible existence of a charge transfer triplet excited state. Keywords: indole, photocycloaddition, mechanism.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献