Endothelial calcium-activated potassium channels as therapeutic targets to enhance availability of nitric oxide

Author:

Kerr Paul M.1,Tam Raymond1,Narang Deepak1,Potts Kyle1,McMillan Dane1,McMillan Kale1,Plane Frances1

Affiliation:

1. Department of Pharmacology, 9–62 Medical Sciences Building, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.

Abstract

The vascular endothelium plays a critical role in vascular health by controlling arterial diameter, regulating local cell growth, and protecting blood vessels from the deleterious consequences of platelet aggregation and activation of inflammatory responses. Circulating chemical mediators and physical forces act directly on the endothelium to release diffusible relaxing factors, such as nitric oxide (NO), and to elicit hyperpolarization of the endothelial cell membrane potential, which can spread to the surrounding smooth muscle cells via gap junctions. Endothelial hyperpolarization, mediated by activation of calcium-activated potassium (KCa) channels, has generally been regarded as a distinct pathway for smooth muscle relaxation. However, recent evidence supports a role for endothelial KCachannels in production of endothelium-derived NO, and indicates that pharmacological activation of these channels can enhance NO-mediated responses. In this review we summarize the current data on the functional role of endothelial KCachannels in regulating NO-mediated changes in arterial diameter and NO production, and explore the tempting possibility that these channels may represent a novel avenue for therapeutic intervention in conditions associated with reduced NO availability such as hypertension, hypercholesterolemia, smoking, and diabetes mellitus.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3