Intracellular calcium recordings from isolated cells of the mammalian central nervous system

Author:

Morris M. E.,MacDonald J. F.,Friedlich J. J.,Szekelyhidi I.

Abstract

Measurements made with two different techniques of intracellular calcium levels from small isolated cells of the mammalian central nervous system are described and compared. Recordings in cultured mouse embryo spinal cord and dorsal root ganglion neurons, made with double-barrelled borosilicate Ca2+-selective microelectrodes yielded a mean Ca2+ level of 2.3 (SE ± 0.54) μM for the lowest values recorded in 24 out of 46 cells. Intracellular Ca2+ dependence on membrane potential was apparent with levels of calcium ≥4 μM (r = 0.371, n = 29). Both cyclic fluctuations induced by tetraethylammonium and an apparent increase in Ca2+ evoked by the depolarizing excitatory amino acid, L-aspartate, were observed. In contrast, estimates of intracellular Ca2+ obtained by spectrofluorimetry of suspensions of mouse embryo brain cells, loaded with the intracellular Ca-binding fluorescent probe, quin2 provided a [Formula: see text]-fold lower value, 152 (SE ± 7) nM. This more closely resembles levels reported for large neurons where large-tip microelectrodes with greater sensitivity were used, and in spite of the heterogeneity of the cells this value is presumed to be a more accurate estimate of intraneuronal Ca2+ concentration. In these fluorescence studies KCl readily evoked increases in intracellular Ca2+ which could be blocked by verapamil and Cd2+ and were not induced in the absence of Ca2+. Increases were also produced by N-methyl-D-aspartate, but not by the kainate-like Lathyrus neurotoxin, L-3-oxalylamino-2-aminopropionic acid. These results provide preliminary evidence for both voltage-sensitive and receptor-activated Ca channels in embryonic brain cells. Although the recording of intraneuronal Ca2+ with conventional ion-selective microelectrodes in small cells has problems with respect to accuracy, stability, and time constant, recent advances in the design of Ca2+ sensors and electrodes are promising. These, as well as developments in techniques of single cell fluorescence analysis, now offer methods with improved and powerful capacity for accurate and simultaneous measurements of intracellular Ca2+ and membrane electrophysiological parameters.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3