SHELL EFFECTS ON THE SPACING OF NUCLEAR LEVELS

Author:

Newton T. D.

Abstract

Recent measurements of resonances in slow neutron total cross sections yield good estimates of the average level spacing, D, in medium and heavy nuclei. These spacings show large variations, by factors of 103 to 105, in the region of magic numbers of nucleons. There are also variations by smaller factors between nuclei with even and odd numbers of protons or neutrons. The even–odd effect is a co-operative phenomenon; it can be approximately treated by redefining the ground state to be used for a Fermi gas model. After this correction the gas model should predict D with reasonable accuracy since it is required only to define the density of a complete set of states. The magic number variations are shown to be fitted by an improved approximation to the single-nucleon level density. This is obtained from the observed sequence of single-particle spins and the assumption that the energy interval between spin subshells is constant. Fifty-two observed spacings are fitted by a two-parameter formula with an average uncertainty factor 3. Many of the larger remaining differences between observation and the predictions of the model are qualitatively explicable as expected departures from this uniform spacing hypothesis.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 408 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nuclear level density from relativistic density functional theory and combinatorial method;Physics Letters B;2024-02

2. pyEGAF: An open-source Python library for the Evaluated Gamma-ray Activation File;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2023-12

3. Impact of the quenching of shell effects with excitation energy on nuclear level density;Nuclear Physics A;2023-04

4. Cross-section measurement of the Kr82(p,γ)Rb83 reaction in inverse kinematics;Physical Review C;2023-03-29

5. Role of the Collective Effects on Neutron Capture Reaction Cross Section;Afyon Kocatepe University Journal of Sciences and Engineering;2022-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3