Abstract
The path integral method is used to obtain an expression, involving a sum over the complete set of solutions for the effective trial Hamiltonian, for the ground state energy of the bound polaron. The numerical calculations of this expression are performed for the hydrogenic and harmonic oscillator effective potentials. The present method together with several previous theories and their numerical results are discussed over a wide range of the electron–phonon coupling constant α and the electron–massive hole coupling β. It is shown that, for the experimentally important region, the present method with the hydrogenic potential yields the lowest energy—slightly lower than obtained by the Larsen's variational calculation.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献