Painlevé analysis and new analytical solutions for compound KdV–Burgers equation with variable coefficients

Author:

Abourabia A. M.1,Hassan K. M.1,Selima E. S.1

Affiliation:

1. Department of Mathematics, Faculty of Science, Menoufiya University, Shebin El-koom 32511, Egypt.

Abstract

We consider the solutions of the compound Korteweg–de Vries (KdV)–Burgers equation with variable coefficients (vccKdV–B) that describe the propagation of undulant bores in shallow water with certain dissipative effects. The Weiss–Tabor–Carnevale (WTC)–Kruskal algorithm is applied to study the integrability of the vccKdV–B equation. We found that the vccKdV–B equation is not Painlevé integrable unless the variable coefficients satisfy certain constraints. We used the outcome of the truncated Painlevé expansion to construct the Bäcklund transformation, and three families of new analytical solutions for the vccKdV –B equation are obtained. The dispersion relation and its characteristics are illustrated. The stability for the vccKdV–B equation is analyzed by using the phase portrait method.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3