Biomass partitioning in a miniature-scale loblolly pine spacing trial

Author:

Russell Matthew B.12,Burkhart Harold E.12,Amateis Ralph L.12

Affiliation:

1. University of Maine, 5755 Nutting Hall, Orono, ME 04469, USA.

2. Department of Forestry, Virginia Polytechnic Institute and State University, 313 Cheatham Hall (0324), Blacksburg, VA 24061, USA.

Abstract

Stand conditions influence the partitioning of biomass to stem, needle, branch, and root components. Using data from 4- to 6-year-old loblolly pine ( Pinus taeda L.) trees grown in a miniature-scale spacing trial, this study determined the effect of initial spacing on the biomass partitioning of loblolly pine. Multivariate analysis of variance procedures concluded that row and column spacing did not have a significant effect on the relative amount of biomass among tree components. Root/shoot and height/diameter ratios, however, differed across densities, indicating that allometric-based partitioning tradeoffs occurred. Results from the miniature-scale trees showed trends similar to those observed with mature-sized trees at operational spatial scales. Stem and woody roots were 70% and 14% of total mass, respectively. Since these trees were physiologically young at the time of harvest, the allocation of mass to needle continued to be a priority, accounting for 10% of the total mass. Initial planting spacing did not directly affect partitioning patterns; however, allometric ratios offered some evidence that partitioning may have changed between above- and below-ground tree components. This analysis offers insight into using principles from similarity analysis to analytically relate biomass partitioning from miniature to operational spatial scales.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3