Dynamic structure of the lower density lipoproteins. II. Deuterium NMR studies of the monolayer of very low and low density lipoproteins

Author:

Chana Ravinder S.,Treleaven W. Dale,Parmar Yashpal I.,Cushley Robert J.

Abstract

The order of phosphatidylcholine (PC) acyl chains in the surface monolayer of very low density lipoproteins (VLDL) and low density lipoproteins (LDL) has been determined from 2H nuclear magnetic resonance order parameters, SCD, using selectively deuterated PC or palmitic acids. From the computer simulated line shapes, we find two distinct phospholipid domains within the amphiphilic monolayer of both VLDL and LDL. In the more ordered domain of LDL, SCD was ≈ 0.3 for the "plateau" chain region. The SCD values of VLDL particles are similar to those of LDL for the 5,6- and 11,12-positions, hence we suggest the organization of the more ordered region of VLDL and LDL are similar. The domain of low order in LDL comprises < 10% of the phospholipid molecules (we do not distinguish between PC and sphingomyelin), having approximately the same order (SCD < 0.1) as egg PC - sphingomyelin unilamellar vesicles. In VLDL, the domain of low order comprises between ≈ 10 and ≈ 20% of the phospholipid molecules and the entire acyl chain is in an essentially isotropic environment (SCD < 0.02). We prepared VLDL-sized microemulsions composed of egg PC, deuterated PC, and triolein to test whether the apoproteins were responsible for creating the two differently organized domains in VLDL and LDL. Surprisingly, these protein-free particles also showed two domains of different order at two temperatures. The high order region, however, is less ordered than in VLDL and LDL. We explain two surface domains of PC in terms of lipid organization and the unique interactions of lipids in the various lipoprotein particles.Key words: lipoproteins, deuterium NMR, phospholipid organization, microemulsions, surface diffusion.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3