Changes in protein and gene expression during induction of the CO2-concentrating mechanism in wild-type and mutant Chlamydomonas

Author:

Spalding Martin H.,Winder Thomas L.,Anderson James C.,Geraghty Anne M.,Marek Laura F.

Abstract

Several changes occur in wild-type Chlamydomonas reinhardtii upon exposure to limiting CO2, including induction of several polypeptides. Polypeptide induction was previously shown to correlate with appearance of the active CO2-concentrating mechanism (CCM) of this alga. In this paper induction of polypeptides by limiting CO2 was investigated in mutants with lesions in the CCM. Mutants with lesions in the ca-1 and pmp-1 loci exhibited alterations in polypeptide induction, but it was concluded that the alterations probably do not represent their primary genetic lesions. Other changes that occur in this alga in response to limiting CO2 were also investigated. Based on a lack of significant change in the transcript abundance of ribulose-1,5-bisphosphate carboxylase/oxygenase large and small subunit genes in the wild type, it was concluded that the previously reported transient decline in synthesis of both subunits is controlled at the translational level. A transient increase in the activity of the photorespiratory enzyme phosphoglycolate phosphatase was observed in the wild type but not in a mutant, cia-5, that lacks induction of the CCM. In addition, changes in expression of genes encoding periplasmic carbonic anhydrase, a 36-kDa membrane-associated protein and a chlorophyll-binding protein occurred in the wild type but not in cia-5 in response to limiting CO2. The absence of these changes in cia-5 was attributed to a lack of either the signal itself or transduction of the signal responsible for adaptation to limiting CO2, which led to speculation that a larger range of responses are regulated by the same signal than was previously recognized. Key words: photosynthesis, photorespiration, algae, inorganic carbon transport, transcription, translation.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3