Correspondence between the one-loop three-point vertex and the Y and Δ electric resistor networks

Author:

Suzuki Alfredo Takashi1

Affiliation:

1. Physics and Engineering Department, Southern Adventist University, Collegedale, TN 37315, and Instituto de Física Teórica-Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz, 271, 01140-070 São Paulo, SP - Brazil.

Abstract

Different mathematical methods have been applied to obtain the analytic result for the massless triangle Feynman diagram yielding a sum of four linearly independent (LI) hypergeometric functions of two variables F4. This result is not physically acceptable when it is embedded in higher loops, because all four hypergeometric functions in the triangle result have the same region of convergence and further integration means going outside those regions of convergence. We could go outside those regions by using the well-known analytic continuation formulas obeyed by the F4, but there are at least two ways we can do this. Which is the correct one? Whichever continuation one uses, it reduces a number of F4 from four to three. This reduction in the number of hypergeometric functions can be understood by taking into account the fundamental physical constraint imposed by the conservation of momenta flowing along the three legs of the diagram. With this, the number of overall LI functions that enter the most general solution must reduce accordingly. It remains to determine which set of three LI solutions needs to be taken. To determine the exact structure and content of the analytic solution for the three-point function that can be embedded in higher loops, we use the analogy that exists between Feynman diagrams and electric circuit networks, in which the electric current flowing in the network plays the role of the momentum flowing in the lines of a Feynman diagram. This analogy is employed to define exactly which three out of the four hypergeometric functions are relevant to the analytic solution for the Feynman diagram. The analogy is built based on the equivalence between electric resistance circuit networks of types Y and Δ in which flows a conserved current. The equivalence is established via the theorem of minimum energy dissipation within circuits having these structures.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Reference8 articles.

1. E.E. Boos and A.I. Davydychev. Vestnik MGU, 28, 8 (1987). Cited by V.A. Smirnov in his book “Renormalization and Asymptotic Expansions”, page 124. Volume 14 of the series Progress in Physics, Birkhäuser Verlag, Basel, Boston, Berlim. 1991.

2. Massless and massive one-loop three-point functions in negative dimensional approach

3. Negative dimensional integrals. I. Feynman graphs

4. P. Appell and J. Kampé de Fériet. Fonctions Hypergéométriques et Hypersphériques — Polynomes d’Hermite, Gauthier-Villars et Cie. Editeurs, Paris. 1926. p. 52.

5. Application of Linear Network Analysis to Feynman Diagrams

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3