The quantum entanglement between colorful dark energy universes in a colorful multiverse

Author:

Sepehri Alireza1,Shoorvazi Somayyeh2,Zomorrodian Mohammad Ebrahim3

Affiliation:

1. Faculty of Physics, Shahid Bahonar University, P.O. Box 76175, Kerman, Iran.

2. Islamic Azad University, Neyshabur Branch, Neyshabur, Iran.

3. Department of Physics, Ferdowsi University of Mashhad, 91775-1436, Mashhad, Iran.

Abstract

Recently, a model for colorful black hole production and decay in proton–proton collisions has been constructed. These results can be extended to a multiverse, because it is obvious that there is enough energy in cosmic rays to produce a baby Universe. It is observed that these Universes are defined by their gauge charges. Notably, Universes can have a color charge. This is not in contradiction with confinement because the typical length scale of QCD (i.e., a Fermi) is much larger than the size of a baby Universe at its birth. These colorful Universes can interact with each other, annihilate, and form a color singlet Universe. Next, it is argued that color confinement may generate an entanglement between colorful dark energy Universes to form a color singlet binary system. Finally, the production cross section for entangled colorful dark energy Universes in a multiverse is obtained. It is found that the cross section of a Friedmann–Robertson–Walker Universe is much larger for smaller values of the Hubble parameter. Also, this cross section is greater for entangled open Universes and smaller for entangled closed Universes.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3